3.174 \(\int \frac{(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^2} \, dx\)

Optimal. Leaf size=297 \[ \frac{\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}+1\right )}{\sqrt{2} a^2 f}+\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d} \tan (e+f x)-\sqrt{2} \sqrt{d \tan (e+f x)}+\sqrt{d}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d} \tan (e+f x)+\sqrt{2} \sqrt{d \tan (e+f x)}+\sqrt{d}\right )}{\sqrt{2} a^2 f}+\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2} \]

[Out]

((1/16 + (3*I)/16)*d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(Sqrt[2]*a^2*f) - ((1/16 + (3*I
)/16)*d^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(Sqrt[2]*a^2*f) + ((1/32 - (3*I)/32)*d^(3/2)
*Log[Sqrt[d] + Sqrt[d]*Tan[e + f*x] - Sqrt[2]*Sqrt[d*Tan[e + f*x]]])/(Sqrt[2]*a^2*f) - ((1/32 - (3*I)/32)*d^(3
/2)*Log[Sqrt[d] + Sqrt[d]*Tan[e + f*x] + Sqrt[2]*Sqrt[d*Tan[e + f*x]]])/(Sqrt[2]*a^2*f) + (3*d*Sqrt[d*Tan[e +
f*x]])/(8*a^2*f*(1 + I*Tan[e + f*x])) - (d*Sqrt[d*Tan[e + f*x]])/(4*f*(a + I*a*Tan[e + f*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.426035, antiderivative size = 297, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.321, Rules used = {3558, 3596, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}+1\right )}{\sqrt{2} a^2 f}+\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d} \tan (e+f x)-\sqrt{2} \sqrt{d \tan (e+f x)}+\sqrt{d}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d} \tan (e+f x)+\sqrt{2} \sqrt{d \tan (e+f x)}+\sqrt{d}\right )}{\sqrt{2} a^2 f}+\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(d*Tan[e + f*x])^(3/2)/(a + I*a*Tan[e + f*x])^2,x]

[Out]

((1/16 + (3*I)/16)*d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(Sqrt[2]*a^2*f) - ((1/16 + (3*I
)/16)*d^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(Sqrt[2]*a^2*f) + ((1/32 - (3*I)/32)*d^(3/2)
*Log[Sqrt[d] + Sqrt[d]*Tan[e + f*x] - Sqrt[2]*Sqrt[d*Tan[e + f*x]]])/(Sqrt[2]*a^2*f) - ((1/32 - (3*I)/32)*d^(3
/2)*Log[Sqrt[d] + Sqrt[d]*Tan[e + f*x] + Sqrt[2]*Sqrt[d*Tan[e + f*x]]])/(Sqrt[2]*a^2*f) + (3*d*Sqrt[d*Tan[e +
f*x]])/(8*a^2*f*(1 + I*Tan[e + f*x])) - (d*Sqrt[d*Tan[e + f*x]])/(4*f*(a + I*a*Tan[e + f*x])^2)

Rule 3558

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1))/(2*a*f*m), x] + Dist[1/(2*a^2*m), Int[(a
+ b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1))
- d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*m,
2*n])

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^2} \, dx &=-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}-\frac{\int \frac{-\frac{a d^2}{2}+\frac{5}{2} i a d^2 \tan (e+f x)}{\sqrt{d \tan (e+f x)} (a+i a \tan (e+f x))} \, dx}{4 a^2}\\ &=\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}-\frac{\int \frac{\frac{a^2 d^3}{2}+\frac{3}{2} i a^2 d^3 \tan (e+f x)}{\sqrt{d \tan (e+f x)}} \, dx}{8 a^4 d}\\ &=\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}-\frac{\operatorname{Subst}\left (\int \frac{\frac{a^2 d^4}{2}+\frac{3}{2} i a^2 d^3 x^2}{d^2+x^4} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{4 a^4 d f}\\ &=\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}-\frac{\left (\left (\frac{1}{16}-\frac{3 i}{16}\right ) d^2\right ) \operatorname{Subst}\left (\int \frac{d-x^2}{d^2+x^4} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{a^2 f}-\frac{\left (\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^2\right ) \operatorname{Subst}\left (\int \frac{d+x^2}{d^2+x^4} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{a^2 f}\\ &=\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}--\frac{\left (\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{d}+2 x}{-d-\sqrt{2} \sqrt{d} x-x^2} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{\sqrt{2} a^2 f}--\frac{\left (\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{d}-2 x}{-d+\sqrt{2} \sqrt{d} x-x^2} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{\sqrt{2} a^2 f}-\frac{\left (\left (\frac{1}{32}+\frac{3 i}{32}\right ) d^2\right ) \operatorname{Subst}\left (\int \frac{1}{d-\sqrt{2} \sqrt{d} x+x^2} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{a^2 f}-\frac{\left (\left (\frac{1}{32}+\frac{3 i}{32}\right ) d^2\right ) \operatorname{Subst}\left (\int \frac{1}{d+\sqrt{2} \sqrt{d} x+x^2} \, dx,x,\sqrt{d \tan (e+f x)}\right )}{a^2 f}\\ &=\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (e+f x)-\sqrt{2} \sqrt{d \tan (e+f x)}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (e+f x)+\sqrt{2} \sqrt{d \tan (e+f x)}\right )}{\sqrt{2} a^2 f}+\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}--\frac{\left (\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} a^2 f}-\frac{\left (\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} a^2 f}\\ &=\frac{\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{16}+\frac{3 i}{16}\right ) d^{3/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{d \tan (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} a^2 f}+\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (e+f x)-\sqrt{2} \sqrt{d \tan (e+f x)}\right )}{\sqrt{2} a^2 f}-\frac{\left (\frac{1}{32}-\frac{3 i}{32}\right ) d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (e+f x)+\sqrt{2} \sqrt{d \tan (e+f x)}\right )}{\sqrt{2} a^2 f}+\frac{3 d \sqrt{d \tan (e+f x)}}{8 a^2 f (1+i \tan (e+f x))}-\frac{d \sqrt{d \tan (e+f x)}}{4 f (a+i a \tan (e+f x))^2}\\ \end{align*}

Mathematica [A]  time = 0.980091, size = 231, normalized size = 0.78 \[ \frac{d^2 \sec ^3(e+f x) \left (-\sin (e+f x)-\sin (3 (e+f x))-3 i \cos (e+f x)+3 i \cos (3 (e+f x))+(3-i) \sqrt{\sin (2 (e+f x))} \sin ^{-1}(\cos (e+f x)-\sin (e+f x)) (\sin (2 (e+f x))-i \cos (2 (e+f x)))+(3+i) \sin ^{\frac{3}{2}}(2 (e+f x)) \log \left (\sin (e+f x)+\sqrt{\sin (2 (e+f x))}+\cos (e+f x)\right )+(1-3 i) \sqrt{\sin (2 (e+f x))} \cos (2 (e+f x)) \log \left (\sin (e+f x)+\sqrt{\sin (2 (e+f x))}+\cos (e+f x)\right )\right )}{32 a^2 f (\tan (e+f x)-i)^2 \sqrt{d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Tan[e + f*x])^(3/2)/(a + I*a*Tan[e + f*x])^2,x]

[Out]

(d^2*Sec[e + f*x]^3*((-3*I)*Cos[e + f*x] + (3*I)*Cos[3*(e + f*x)] - Sin[e + f*x] + (1 - 3*I)*Cos[2*(e + f*x)]*
Log[Cos[e + f*x] + Sin[e + f*x] + Sqrt[Sin[2*(e + f*x)]]]*Sqrt[Sin[2*(e + f*x)]] + (3 + I)*Log[Cos[e + f*x] +
Sin[e + f*x] + Sqrt[Sin[2*(e + f*x)]]]*Sin[2*(e + f*x)]^(3/2) + (3 - I)*ArcSin[Cos[e + f*x] - Sin[e + f*x]]*Sq
rt[Sin[2*(e + f*x)]]*((-I)*Cos[2*(e + f*x)] + Sin[2*(e + f*x)]) - Sin[3*(e + f*x)]))/(32*a^2*f*Sqrt[d*Tan[e +
f*x]]*(-I + Tan[e + f*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.052, size = 147, normalized size = 0.5 \begin{align*}{\frac{-{\frac{3\,i}{8}}{d}^{2}}{f{a}^{2} \left ( -id+d\tan \left ( fx+e \right ) \right ) ^{2}} \left ( d\tan \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{{d}^{3}}{8\,f{a}^{2} \left ( -id+d\tan \left ( fx+e \right ) \right ) ^{2}}\sqrt{d\tan \left ( fx+e \right ) }}-{\frac{{\frac{i}{8}}{d}^{2}}{f{a}^{2}}\arctan \left ({\sqrt{d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt{-id}}}} \right ){\frac{1}{\sqrt{-id}}}}-{\frac{{\frac{i}{4}}{d}^{2}}{f{a}^{2}}\arctan \left ({\sqrt{d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt{id}}}} \right ){\frac{1}{\sqrt{id}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x)

[Out]

-3/8*I/f/a^2*d^2/(-I*d+d*tan(f*x+e))^2*(d*tan(f*x+e))^(3/2)-1/8/f/a^2*d^3/(-I*d+d*tan(f*x+e))^2*(d*tan(f*x+e))
^(1/2)-1/8*I/f/a^2*d^2/(-I*d)^(1/2)*arctan((d*tan(f*x+e))^(1/2)/(-I*d)^(1/2))-1/4*I/f/a^2*d^2/(I*d)^(1/2)*arct
an((d*tan(f*x+e))^(1/2)/(I*d)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 2.4895, size = 1520, normalized size = 5.12 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="fricas")

[Out]

1/16*(4*a^2*f*sqrt(-1/16*I*d^3/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(-2*(I*d^2*e^(2*I*f*x + 2*I*e) + 4*(a^2*f*e^(
2*I*f*x + 2*I*e) + a^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-1/16*I*d^3/(a
^4*f^2)))*e^(-2*I*f*x - 2*I*e)/d) - 4*a^2*f*sqrt(-1/16*I*d^3/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(-2*(I*d^2*e^(2
*I*f*x + 2*I*e) - 4*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*
I*e) + 1))*sqrt(-1/16*I*d^3/(a^4*f^2)))*e^(-2*I*f*x - 2*I*e)/d) + 4*a^2*f*sqrt(1/64*I*d^3/(a^4*f^2))*e^(4*I*f*
x + 4*I*e)*log(1/8*(I*d^2 + 8*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*
I*f*x + 2*I*e) + 1))*sqrt(1/64*I*d^3/(a^4*f^2)))*e^(-2*I*f*x - 2*I*e)/(a^2*f)) - 4*a^2*f*sqrt(1/64*I*d^3/(a^4*
f^2))*e^(4*I*f*x + 4*I*e)*log(1/8*(I*d^2 - 8*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e
) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(1/64*I*d^3/(a^4*f^2)))*e^(-2*I*f*x - 2*I*e)/(a^2*f)) + (2*d*e^(4*I*f*
x + 4*I*e) + d*e^(2*I*f*x + 2*I*e) - d)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-
4*I*f*x - 4*I*e)/(a^2*f)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*tan(f*x+e))**(3/2)/(a+I*a*tan(f*x+e))**2,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [A]  time = 1.20707, size = 275, normalized size = 0.93 \begin{align*} \frac{1}{8} \, d^{3}{\left (\frac{\sqrt{2} \arctan \left (\frac{16 i \, \sqrt{d^{2}} \sqrt{d \tan \left (f x + e\right )}}{8 i \, \sqrt{2} d^{\frac{3}{2}} + 8 \, \sqrt{2} \sqrt{d^{2}} \sqrt{d}}\right )}{a^{2} d^{\frac{3}{2}} f{\left (\frac{i \, d}{\sqrt{d^{2}}} + 1\right )}} + \frac{2 \, \sqrt{2} \arctan \left (\frac{16 i \, \sqrt{d^{2}} \sqrt{d \tan \left (f x + e\right )}}{-8 i \, \sqrt{2} d^{\frac{3}{2}} + 8 \, \sqrt{2} \sqrt{d^{2}} \sqrt{d}}\right )}{a^{2} d^{\frac{3}{2}} f{\left (-\frac{i \, d}{\sqrt{d^{2}}} + 1\right )}} - \frac{3 i \, \sqrt{d \tan \left (f x + e\right )} d \tan \left (f x + e\right ) + \sqrt{d \tan \left (f x + e\right )} d}{{\left (d \tan \left (f x + e\right ) - i \, d\right )}^{2} a^{2} d f}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="giac")

[Out]

1/8*d^3*(sqrt(2)*arctan(16*I*sqrt(d^2)*sqrt(d*tan(f*x + e))/(8*I*sqrt(2)*d^(3/2) + 8*sqrt(2)*sqrt(d^2)*sqrt(d)
))/(a^2*d^(3/2)*f*(I*d/sqrt(d^2) + 1)) + 2*sqrt(2)*arctan(16*I*sqrt(d^2)*sqrt(d*tan(f*x + e))/(-8*I*sqrt(2)*d^
(3/2) + 8*sqrt(2)*sqrt(d^2)*sqrt(d)))/(a^2*d^(3/2)*f*(-I*d/sqrt(d^2) + 1)) - (3*I*sqrt(d*tan(f*x + e))*d*tan(f
*x + e) + sqrt(d*tan(f*x + e))*d)/((d*tan(f*x + e) - I*d)^2*a^2*d*f))